
Package: gramEvol (via r-universe)
August 20, 2024

Type Package

Title Grammatical Evolution for R

Version 2.1-4

Date 2020-07-18

Author Farzad Noorian, Anthony Mihirana de Silva

Maintainer Farzad Noorian <farzad.noorian@gmail.com>

Description A native R implementation of grammatical evolution (GE).
GE facilitates the discovery of programs that can achieve a
desired goal. This is done by performing an evolutionary
optimisation over a population of R expressions generated via a
user-defined context-free grammar (CFG) and cost function.

URL https://github.com/fnoorian/gramEvol/

BugReports https://github.com/fnoorian/gramEvol/issues

Suggests rex, knitr

License GPL (>= 2)

VignetteBuilder knitr

RoxygenNote 5.0.1

Repository https://fnoorian.r-universe.dev

RemoteUrl https://github.com/fnoorian/gramevol

RemoteRef HEAD

RemoteSha 302bcc95f1f3d6951dcd1735bf3a9d241bb34e04

Contents
c . 2
CreateGrammar . 3
EvalExpressions . 5
EvolutionStrategy.int . 6
GeneticAlg.int . 9
GrammarGetNextSequence . 12

1

https://github.com/fnoorian/gramEvol/
https://github.com/fnoorian/gramEvol/issues

2 c

GrammarIsTerminal . 14
GrammarMap . 15
GrammarRandomExpression . 16
GrammaticalEvolution . 17
GrammaticalExhaustiveSearch . 20
GrammaticalRandomSearch . 22
ReplaceInExpression . 24
summary . 25

Index 28

c Grammar Rule Concatenation

Description

Concatenates two or more grammar rule objects.

Usage

S3 method for class 'GERule'
c(..., recursive=FALSE)

Arguments

... Grammar rule objects to be concatenated.

recursive Not used.

Value

A new grammar rule object.

See Also

CreateGrammar

Examples

rule1 <- grule(Func1, Func2)
rule2 <- grule(`*`, `/`)

rule.all <- c(rule1, rule2)

print(rule.all)

CreateGrammar 3

CreateGrammar Context-free Grammar Object

Description

Creates a context-free grammar object.

Usage

grule(...)

gsrule(...)

gvrule(vec)

CreateGrammar(ruleDef, startSymb)

Arguments

... A series of comma separated strings or expressions, for gsrule and grule re-
spectively. Expressions can be wrapped in .() to preserve their commas or
assignment operators.

vec An iterable vector or list.

ruleDef Grammatical rule definition. Either a list of grammar rule objects (GERule)
created using grule and gsrule with a syntax similar to Backus-Naur form, or
a list of character strings representing symbols and sequences in Backus-Naur
form, or a filename or connection to a .bnf file.
See details.

startSymb The symbol where the generation of a new expression should start. If not given,
the first rule in ruleDef is used.

Details

The rule definition is the grammar described in Backus-Naur context-free grammatical format. The
preferred way of defining a grammar is to create a list simulating BNF format, which collects
several named grammar rule objects (GERule). Each name defines the non-terminal symbol, and
each rule in the collection determines the production rule, i.e., possible sequences that will replace
the symbol.

Defining a grammar rule object (GERule) can take three forms:

1. The first form uses grule (Grammar Rule), where R expressions are accepted. In the mapping
process, variables are looked up and replaced using the production rules.

2. The second form uses gsrule (Grammar String Rule) and uses character strings. The input to
gsrule are character string values, where any value surrounded by ’<’ or ’>’ is considered as non-
terminal symbols and will be replaced using the rule with the same name in the mapping process.

4 CreateGrammar

Other symbols are considered terminals. This form allows generation of sequences that are not
syntactically valid in R (such as `var op var`).

3. The third form uses gvrule (Grammar Vector Rule), where objects within an iterable (vector or
list) containing all of the expressions are used as individual rules.

Alternatively, CreateGrammar can read and parse .bnf text files.

Value

CreateGrammar returns a grammar object.

grule and gsrule return a GERule object.

See Also

c, GrammarMap, GrammaticalEvolution

Examples

Define a simple grammar in BNF format
<expr> ::= <var><op><var>
<op> ::= + | - | *
<var> ::= A | B
ruleDef <- list(expr = gsrule("<var><op><var>"),

op = gsrule("+", "-", "*"),
var = gsrule("A", "B"))

print rules
print(ruleDef)

create and display a vector rule
vectorRule = gvrule(1:5)
print(vectorRule)

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

print grammar object
print(grammarDef)

Creating the same grammar using R expressions
ruleDef <- list(expr = grule(op(var, var)),

op = grule(`+`, `-`, `*`),
var = grule(A, B))

grammarDef <- CreateGrammar(ruleDef)

print(grammarDef)

Two rules with commas and assignments, preserved using .()
ruleDef <- list(expr = grule(data.frame(dat)),

dat = grule(.(x = 1, y = 2), .(x = 5, y = 6)))
grammarDef <- CreateGrammar(ruleDef)

EvalExpressions 5

print(GrammarMap(c(0), grammarDef))
print(GrammarMap(c(1), grammarDef))

EvalExpressions Evaluate a collection of Expressions

Description

EvalExpressions evaluates one or more expressions, either in string format or as expression
objects.

Usage

EvalExpressions(expressions, envir = parent.frame())

Arguments

expressions an expression, or a collection of expressions.

envir the environment in which expressions are to be evaluated. May also be NULL, a
list, a data frame, a pair-list or an integer as specified in sys.call.

Details

EvalExpressions is a wrapper around eval and parse functions in R base package. It can handle
a single, a vector or a list of expressions, character strings or GEPhenotype objects.

The envir argument is directly passed to eval function. If it is not specified, the parent frame (i.e.,
the environment where the call to eval was made) is used instead.

EvalExpressions only evaluates terminal expressions and character strings. Evaluating non-terminal
expressions will result in a warning and NA is returned.

Value

If one expression is evaluated, a vector of numeric values is returned. Otherwise a data frame with
result of each expression in a separate column is returned.

See Also

GrammarMap

Examples

A <- 1:6
B <- 1

EvalExpressions("A - B")

a vector of text strings
exprs <- c("A + B", "A - B")

6 EvolutionStrategy.int

EvalExpressions(exprs, data.frame(A = A, B = B))

a vector of expressions
exprs <- expression(A + B, A - B)
EvalExpressions(exprs, data.frame(A = A, B = B))

EvolutionStrategy.int Evolution Strategy with Integer Chromosomes

Description

Uses evolution strategy to find the minima of a given cost function. It evolves chromosomes with
limited-range integers as codons.

Usage

EvolutionStrategy.int(genomeLen, codonMin, codonMax,
genomeMin = rep.int(codonMin, genomeLen),
genomeMax = rep.int(codonMax, genomeLen),
suggestion = NULL, popSize=4, newPerGen = 4,
iterations = 500, terminationCost = NA,
mutationChance = 1/(genomeLen+1),
monitorFunc = NULL, evalFunc, allowrepeat = TRUE,
showSettings = FALSE, verbose = FALSE, plapply = lapply)

Arguments

genomeLen Number of integers (i.e, codons) in chromosome.

codonMin Minimum integer value range for all codons.

codonMax Maximum integer value range for all codons.

genomeMin A vector of length genomeLen containing fine-grained control over each codon’s
minimum. Overrides codonMin.

genomeMax A vector of length genomeLen containing fine-grained control over each codon’s
maximum. Overrides codonMax.

suggestion A list of suggested chromosomes to be used in the initial population.

popSize Size of the population generated by mutating the parent.

newPerGen Number of the new randomly generated chromosome in each generation.

iterations Number of generations to evolve the population.
terminationCost

Target cost. If the best chromosome’s cost reaches this value, the algorithm
terminates.

mutationChance The chance of a codon being mutated. It must be between 0 and 1.

monitorFunc A function that is called at each generation. Can be used to monitor evolution
of population.

EvolutionStrategy.int 7

evalFunc The cost function.

allowrepeat Allows or forbids repeated integers in the chromosome.

showSettings Enables printing GA settings.

verbose Enables verbose debugging info.

plapply lapply function used for mapping chromosomes to the cost function. See de-
tails for parallelization tips.

Details

EvolutionStrategy.int implements evolutionary strategy search algorithm with chromosomes
created from integer values in the range of codonMin to codonMax. genomeMin and genomeMax
allow fine-grained control of range for individual codons. It first creates an initial population, using
suggested input suggestion or a randomly generated chromosome. Score of each chromosome is
evaluated using the cost function costFunc. If the best chromosome reaches terminationCost,
the algorithm terminates; otherwise only the best candidate is selected and mutated to create a new
generation, and the cycle is repeated. This iteration continues until the required cost is reached or
the number of generations exceeds iterations.

At each generation, the supplied monitorFunc is called with a list similar to EvolutionStrategy.int
returning value as its argument.

The evalFunc receives integer sequences and must return a numeric value. The goal of optimization
would be to find a chromosome which minimizes this value.

To parallelize cost function evaluation, set plapply to a parallelized lapply, such as mclapply
from package parallel. In functions that do not handle data dependencies such as parLapply,
variables and functions required for correct execution of evalFunc must be exported to worker
nodes before invoking EvolutionStrategy.int.

Value

A list containing information about settings, population, and the best chromosome.

settings$genomeMin

Minimum of each codon.
Settings$genomeMax

Maximum of each codon.
settings$popSize

Size of the population created using mutation.
settings$newPerGen

Number of the new randomly generated chromosome in each generation.
settings$totalPopulation

Size of the total population.
settings$iterations

Number of maximum generations.
settings$suggestion

Suggested chromosomes.
settings$mutationChance

Mutation chance.

8 EvolutionStrategy.int

population$population

The genomic data of the current population.
population$evaluations

Cost of the latest generation.
population$best

Historical cost of the best chromosomes.
population$mean

Historical mean cost of population.
population$currentIteration

Number of generations evolved until now.

best$genome The best chromosome in integer sequence format.

best$cost The cost of the best chromosome.

See Also

GrammaticalEvolution, GeneticAlg.int

Examples

define the evaluate function
evalfunc <- function(l) {

maximize the odd indices and minimize the even indices
no repeated values are allowed
odd <- seq(1, 20, 2)
even <- seq(2, 20, 2)
err <- sum(l[even]) - sum(l[odd]);

stopifnot(!any(duplicated(l))) # no duplication allowed

return (err)
}

monitorFunc <- function(result) {
cat("Best of gen: ", min(result$best$cost), "\n")

}

x <- EvolutionStrategy.int(genomeLen = 20, codonMin = 0, codonMax = 20,
allowrepeat = FALSE, terminationCost = -110,
monitorFunc = monitorFunc, evalFunc = evalfunc)

print(x)

best.result <- x$best$genome
print("Odds:")
print(sort(best.result[seq(1, 20, 2)]))
print("Evens:")
print(sort(best.result[seq(2, 20, 2)]))

GeneticAlg.int 9

GeneticAlg.int Genetic Algorithm with Integer Chromosomes

Description

Uses genetic algorithm to find the minima of a given cost function. It evolves chromosomes with
limited-range integers as codons.

Usage

GeneticAlg.int(genomeLen, codonMin, codonMax,
genomeMin = rep.int(codonMin, genomeLen),
genomeMax = rep.int(codonMax, genomeLen),
suggestions = NULL, popSize = 50,
iterations = 100, terminationCost = NA,
mutationChance = 1/(genomeLen+1), elitism = floor(popSize/10),
geneCrossoverPoints = NULL,
monitorFunc = NULL, evalFunc, allowrepeat = TRUE,
showSettings = FALSE, verbose = FALSE, plapply = lapply)

Arguments

genomeLen Number of integers (i.e, codons) in chromosome.

codonMin Minimum integer value range for all codons.

codonMax Maximum integer value range for all codons.

genomeMin A vector of length genomeLen containing fine-grained control over each codon’s
minimum. Overrides codonMin.

genomeMax A vector of length genomeLen containing fine-grained control over each codon’s
maximum. Overrides codonMax.

suggestions A list of suggested chromosomes to be used in the initial population. Alterna-
tively, an m-by-n matrix, where m is the number of suggestions and n is the
chromosome length.

popSize Size of the population.

iterations Number of generations to evolve the population.
terminationCost

Target cost. If the best chromosome’s cost reaches this value the algorithm ter-
minates.

mutationChance The chance of a codon being mutated. It must be between 0 and 1.
geneCrossoverPoints

Codon groupings (genes) to be considered while crossover occurs. If given,
odd and even codon groups are exchanged between parents. Otherwise random
points are selected and a classic single-point crossover is performed.

elitism Number of top ranking chromosomes that are directly transfered to next gener-
ation without going through evolutionary operations.

10 GeneticAlg.int

monitorFunc A function that is called at each generation. Can be used to monitor evolution
of population.

evalFunc The cost function.

allowrepeat Allows or forbids repeated integers in the chromosome.

showSettings Enables printing GA settings.

verbose Enables verbose debugging info.

plapply lapply function used for mapping chromosomes to cost function. See details
for parallelization tips.

Details

GeneticAlg.int implements evolutionary algorithms with chromosomes created from integer val-
ues in the range of codonMin to codonMax. genomeMin and genomeMax allow fine-grained con-
trol of range for individual codons. It first creates an initial population, using suggested inputs
suggestions and randomly generated chromosomes. Cost of each chromosome is evaluated using
the cost function evalFunc. If one of the chromosomes reaches terminationCost, the algorithm
terminates; Otherwise evolutionary operators including selection, cross-over and mutation are ap-
plied to the population to create a new generation. This iteration is continued until the required cost
is reached or the number of generations exceeds iterations.

At each generation, the supplied monitorFunc is called with a list similar to GeneticAlg.int
returning value as its argument.

The evalFunc receives integer sequences and must return a numeric value. The goal of optimization
would be to find a chromosome which minimizes this value.

To parallelize cost function evaluation, set plapply to a parallelized lapply, such as mclapply
from package parallel. In functions that do not handle data dependencies such as parLapply,
variables and functions required for correct execution of evalFunc must be exported to worker
nodes before invoking GeneticAlg.int.

Value

A list containing information about settings, population, and the best chromosome.

settings$genomeMin

Minimum of each codon.
Settings$genomeMax

Maximum of each codon.
settings$popSize

Size of the population.
settings$elitism

Number of elite individuals.
settings$iterations

Number of maximum generations.
settings$suggestions

Suggested chromosomes.
settings$mutationChance

Mutation chance.

GeneticAlg.int 11

settings$geneCrossoverPoints

Cross-over points.
population$population

The genomic data of the current population.
population$evaluations

Cost of the latest generation.
population$best

Historical cost of the best chromosomes.
population$mean

Historical mean cost of population.
population$currentIteration

Number of generations evolved until now.

best$genome The best chromosome.

best$cost The cost of the best chromosome.

References

This function is partially inspired by genalg package by Egon Willighagen. See https://cran.
r-project.org/package=genalg.

See Also

GrammaticalEvolution, EvolutionStrategy.int

Examples

define the evaluate function
evalfunc <- function(l) {

maximize the odd indices and minimize the even indices
no repeated values are allowed
odd <- seq(1, 20, 2)
even <- seq(2, 20, 2)
err <- sum(l[even]) - sum(l[odd]);

stopifnot(!any(duplicated(l))) # no duplication allowed

return (err)
}

monitorFunc <- function(result) {
cat("Best of gen: ", min(result$best$cost), "\n")

}

x <- GeneticAlg.int(genomeLen = 20, codonMin = 0, codonMax = 20,
allowrepeat = FALSE, terminationCost = -110,
monitorFunc = monitorFunc, evalFunc = evalfunc)

print(x)

best.result <- x$best$genome

https://cran.r-project.org/package=genalg
https://cran.r-project.org/package=genalg

12 GrammarGetNextSequence

print("Odds:")
print(sort(best.result[seq(1, 20, 2)]))
print("Evens:")
print(sort(best.result[seq(2, 20, 2)]))

GrammarGetNextSequence

Grammar Iterator

Description

Iterates through grammar’s valid sequences.

Usage

GrammarGetFirstSequence(grammar,
seqStart = NULL,
startSymb = GrammarStartSymbol(grammar),
max.depth = GrammarGetDepth(grammar),
max.len = GrammarMaxSequenceLen(grammar, max.depth, startSymb))

GrammarGetNextSequence(grammar,
seqStart = NULL,
startSymb = GrammarStartSymbol(grammar),
max.depth = GrammarGetDepth(grammar),
max.len = GrammarMaxSequenceLen(grammar, max.depth, startSymb))

is.GrammarOverflow(object)

Arguments

grammar A grammar object.

seqStart The sequence to be incremented. For a value of NULL, the first sequence is
returned. Partial sequences are completed and returned.

startSymb The non-terminal symbol where the generation of a new expression should start.

max.depth Maximum depth of recursion, in case of a cyclic grammar. By default it is
limited to the number of production rules in the grammar.

max.len Maximum length of sequence to return. Used to avoid recursion.

object An object to be tested.

Details

GrammarGetFirstSequence returns the first sequence that creates a valid expression with the given
grammar object. GrammarGetNextSequence allows iterating through all valid sequences in a gram-
mar. If a seqStart = NULL is used, GrammarGetFirstSequence is called to and the first sequence in

GrammarGetNextSequence 13

the grammar is returned. Calling GrammarGetNextSequence or GrammarGetFirstSequence with
an incomplete sequence returns a full-length sequence starting with the given seqStart.

When GrammarGetNextSequence reaches the last of all valid sequences, it returns a GrammarOverflow
object. This object can be identified using is.GrammarOverflow.

Value

GrammarGetFirstSequence returns a numeric vector representing the first sequence of the gram-
mar.

GrammarGetNextSequence returns a numeric vector or a GrammarOverflow object.

is.GrammarOverflow returns TRUE if object is a GrammarOverflow, otherwise FALSE.

See Also

GrammaticalExhaustiveSearch

Examples

Define a simple grammar
<expr> ::= <var><op><var>
<op> ::= + | - | *
<var> ::= A | B
ruleDef <- list(expr = gsrule("<var><op><var>"),

op = gsrule("+", "-", "*"),
var = gsrule("A", "B"))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

Iterate and print all valid sequence and expressions
string <- NULL
while (TRUE) {

string <- GrammarGetNextSequence(grammarDef, string)

if (is.GrammarOverflow(string)) {
break

}

expr <- GrammarMap(string, grammarDef)
cat(string, " -> ", as.character(expr), "\n")

}

test a partial string
GrammarGetNextSequence(grammarDef, c(0, 0, 2))

14 GrammarIsTerminal

GrammarIsTerminal Non-terminal Phenotype test.

Description

Checks a phenotype object for containing non-terminal symbols.

Usage

GrammarIsTerminal(x)

Arguments

x A GEPhenotype object.

Value

TRUE if phenotype is terminal, FALSE otherwise.

See Also

GrammarMap

Examples

Define a recursive grammar
<expr> ::= <expr>+<expr> | var
<var> ::= A | B | C
ruleDef <- list(expr = grule(expr+expr, var),

var = grule(A, B, C))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

a short sequence leading to infinite recursion
sq <- c(0)
expr <- GrammarMap(sq, grammarDef)

print(expr)

check the phenotype for being non-terminal
print(GrammarIsTerminal(expr))

a terminal sequence
sq <- c(0, 1, 0, 1, 2)
expr <- GrammarMap(sq, grammarDef)

print(expr)
print(GrammarIsTerminal(expr))

GrammarMap 15

GrammarMap Sequence to Expression Mapping using Context-free Grammar

Description

Converts a sequence of integer numbers to an expression using a grammar object.

Usage

GrammarMap(inputString, grammar, wrappings = 3, verbose = FALSE)

Arguments

inputString A vector of integers to define the path of symbol selection in grammar tree. It
uses zero-based indexing to address production rules in the grammar.

grammar A grammar object.

wrappings The number of times the function is allowed to wrap around inputString if
non-terminal symbols are still remaining.

verbose Prints out each steps of grammar mapping.

Details

GrammarMap starts from the startExpr defined in the grammar object; then it iterates through
inputString, replacing symbols in the expression with associated replacements in the grammar
using the current value of inputString.

If the function exhausts all non-terminal symbols in the expression, it terminates. If the end of
inputString is reached and still non-terminal symbols exist, the algorithm will restart from the
beginning of the current inputString. To avoid unlimited recursions in case of a cyclic grammar,
wrappings variable limits the number of this restart.

If verbose = TRUE, step-by-step replacement of symbols with production rules are displayed.

GrammarMap returns a GEPhenotype object, which can be converted to a character string using
as.character, or an R expression with as.expression.

Value

A GrammarMap returns a GEPhenotype object.

expr The generated expression as a character string.

parsed The generated expression. NULL if the expression still contains non-terminal
symbols.

type "T" if the expression is valid, "NT" if the expression still contains non-terminal
symbols.

See Also

GrammarIsTerminal CreateGrammar, GrammarRandomExpression

16 GrammarRandomExpression

Examples

Define a simple grammar
<expr> ::= <var><op><var>
<op> ::= + | - | *
<var> ::= A | B | C
ruleDef <- list(expr = gsrule("<var><op><var>"),

op = gsrule("+", "-", "*"),
var = grule(A, B, C))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

this should create the expression "A - C"
<expr> -> 0 -> <var><op><var>
<var><op><var> -> 0 -> A<op><var>
A<op><var> -> 1 -> A - <var>
A - <var> -> 2 -> A - C
sq <- c(0, 0, 1, 2)
expr <- GrammarMap(sq, grammarDef, verbose = TRUE)

print(expr)

check the expression as a character string
stopifnot(as.character(expr) == "A - C")

evaluate the expression
A = 5; C = 1
eval(as.expression(expr))

GrammarRandomExpression

Random Expression Generation

Description

Creates random expressions from context-free grammar.

Usage

GrammarRandomExpression(grammar,
numExpr = 1,
max.depth = length(grammar$def),
startSymb = GrammarStartSymbol(grammar),
max.string = GrammarMaxSequenceRange(grammar, max.depth, startSymb,

approximate = TRUE),
wrappings = 3,
retries = 100)

GrammaticalEvolution 17

Arguments

grammar A grammar object.

numExpr Number of random expressions to generate.

max.depth Maximum depth of recursion, in case of a cyclic grammar. By default it is
limited to the number of production rules in the grammar.

startSymb The symbol where the generation of a new expression should start.

max.string Maximum value for each element of the sequence.

wrappings The number of times the function is allowed to wrap around inputString if
non-terminal symbols are still remaining.

retries Number of retries until a terminal and valid expressions is found.

Details

GrammarRandomExpression creates num.expr random expressions from the given grammar. It can
be used to quickly examine the expressibility of the grammar, or as a form of random search over
the grammar.

Value

An expressions, or a list of expressions.

Examples

Define a simple grammar
<expr> ::= <var><op><var>
<op> ::= + | - | *
<var> ::= A | B | C
ruleDef <- list(expr = gsrule("<var><op><var>"),

op = gsrule("+", "-", "*"),
var = grule(A, B, C))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

Generate 5 random expressions
exprs <- GrammarRandomExpression(grammarDef, 5)
print(exprs)

GrammaticalEvolution Grammatical Evolution

Description

Evolves an expression using a context-free grammar to minimize a given cost function.

18 GrammaticalEvolution

Usage

GrammaticalEvolution(grammarDef, evalFunc,
numExpr = 1,
max.depth = GrammarGetDepth(grammarDef),
startSymb = GrammarStartSymbol(grammarDef),
seqLen = GrammarMaxSequenceLen(grammarDef, max.depth, startSymb),
wrappings = 3,
suggestions = NULL,
optimizer = c("auto", "es", "ga"),
popSize = "auto", newPerGen = "auto", elitism = 2,
mutationChance = NA,
iterations = "auto",
terminationCost = NA,
monitorFunc = NULL,
disable.warnings=FALSE,
plapply = lapply, ...)

S3 method for class 'GrammaticalEvolution'
print(x, ..., show.genome = FALSE)

Arguments

grammarDef A grammar object.
evalFunc The cost function, taking a string or a collection of strings containing the ex-

pression(s) as its input and returning the cost of the expression(s).
numExpr Number of expressions generated and given to evalFunc.
max.depth Maximum depth of search in case of a cyclic grammar. By default it is limited

to the number of production rules in the grammar.
startSymb The symbol where the generation of a new expression should start.
seqLen Length of integer vector used to create the expression.
wrappings Number of wrappings in case the length of chromosome is not enough for con-

version to an expression.
suggestions Suggested chromosomes to be added to the initial population pool. if optimizer

parameter is set to "es", only a single chromosome (as a numeric vector) is
acceptable. For "ga" mode, a list of numeric vectors.

optimizer The evolutionary optimizer. "es" uses evolution strategy as in EvolutionStrategy.int
and "ga" uses genetic algorithm as in GeneticAlg.int. "auto" chooses evo-
lution strategy when numExpr = 1, and genetic algorithm otherwise. If "auto"
is used, popSize and iterations are tweaked based on the grammar as well.

popSize Population size in the evolutionary optimizer. By default, 8 for ES and 48 for
GA.

newPerGen Number of randomly generated individuals in evolution strategy. If “auto", it is
set to 25% of population of grammar if it is not recursive, otherwise to all of it.

elitism Number of top ranking chromosomes that are directly transfered to the next gen-
eration without going through evolutionary operations, used in genetic algorithm
optimizer.

GrammaticalEvolution 19

iterations Number of maximum iterations in the evolutionary optimizer. By default, 1000
for "es" optimizer and 200 for "ga".

terminationCost

Target cost. If a sequence with this cost or less is found, the algorithm termi-
nates.

mutationChance Mutation chance in the evolutionary optimizer. It must be between 0 and 1. By
default it is set to 1/(1+chromosome size)) for genetic algorithm and 10/(1+chromosome
size)) for evolution strategy.

monitorFunc A function that is called at each generation. It can be used to monitor evolution
of population.

disable.warnings

If TRUE, suppresses any warnings generated while evaulating evalFuncs.

plapply lapply function used for mapping chromosomes to the cost function. See de-
tails for parallelization tips.

... Additional parameters are passed to GeneticAlg.int or EvolutionStrategy.int.

x Grammatical Evolution results.

show.genome Prints the numeric value of genome if TRUE.

Details

This function performs an evolutionary search over the grammar, better known as Grammatical
Evolution. It evolves integer sequences and converts them to a collection containing numExpr ex-
pression. These expressions can be evaluated using eval function. The evalFunc receives these
expressions and must return a numeric value. The goal of optimization would be to find a chromo-
some which minimizes this function.

Two evolutionary optimizers are supported: Genetic algorithm and evolution strategy, which are set
by the optimizer parameter.

Only valid (i.e., terminal) expressions are passed to evalFunc, and it is guaranteed that evalFunc
receives at least one expression.

If the grammar contains recursive elements, it is advisable that chromosomeLen is defined manually,
as in such cases the possible search space grows explosively with the recursion. The evolutionary
algorithm automatically removes the recursive chromosomes from the population by imposing a
penalty for chromosomes creating expressions with non-terminal elements.

monitorFunc receives a list similar to the GrammaticalEvolution’s return value.

Value

The results of GeneticAlg.int or EvolutionStrategy.int with an additional item:

best$expressions

Expression(s) with the best cost.

See Also

CreateGrammar, GeneticAlg.int, EvolutionStrategy.int, EvalExpressions

20 GrammaticalExhaustiveSearch

Examples

Grammar Definition
ruleDef <- list(expr = gsrule("<der.expr><op><der.expr>"),

der.expr = grule(func(var), var),
func = grule(log, exp, sin, cos),
op = gsrule("+", "-", "*"),
var = grule(A, B, n),
n = grule(1, 2, 3, 4))

Creating the grammar object
grammarDef <- CreateGrammar(ruleDef)

cost function
evalFunc <- function(expr) {

expr: a string containing a symbolic expression
returns: Symbolic regression Error
A <- 1:6
B <- c(2, 5, 8, 3, 4, 1)

result <- eval(as.expression(expr))

X <- log(A) * B
err <- sum((result - X)^2)

return(err)
}

invoke grammatical evolution (with default parameters)
ge <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0.001)

print results
print(ge, sequence = TRUE)

GrammaticalExhaustiveSearch

Exhaustive Search

Description

Exhaustive Search within context-free grammar.

Usage

GrammaticalExhaustiveSearch(grammar, evalFunc,
max.depth = GrammarGetDepth(grammar),
startSymb = GrammarStartSymbol(grammar),
max.len = GrammarMaxSequenceLen(grammar, max.depth, startSymb),
wrappings = 3,
terminationCost = NA,
monitorFunc = NULL)

GrammaticalExhaustiveSearch 21

Arguments

grammar A grammar object.

evalFunc The evaluation function, taking an expression as its input and returning the cost
(i.e., the score) of the expression.

max.depth Maximum depth of recursion, in case of a cyclic grammar. By default it is
limited to the number of production rules in the grammar.

startSymb The symbol where the generation of a new expression should start.

max.len Maximum length of the sequences to search. By default it is determined by
max.depth.

wrappings The number of times the function is allowed to wrap around inputString if
non-terminal symbols are still remaining.

terminationCost

Target cost. If an expression with this cost or less is found, the algorithm termi-
nates.

monitorFunc A function that is called at each iteration. It can be used to monitor the search.

Details

GrammaticalExhaustiveSearch performs an exhaustive search, iterating through all possible ex-
pressions that can be generated by the grammar, to find the expression that minimises evalFunc.

The search terminates when all possible expressions are exhausted, or when an expression with a
cost less than terminationCost is discovered.

If a monitorFunc is given, it is called for each expression, and it receives a list similar to the
GrammaticalExhaustiveSearch’s return value with the information availabe for that expression.

Value

bestExpression The Best expresssion.

bestSequence Best expresssion’s generating sequence.

bestCost Best expresssion’s cost.

numExpr Number of evaluated expressions.

In addition, the monitorFunc receives the following additional slots:

currentExpression

The current expresssion.
currentSequence

Current expresssion’s generating sequence.

currentCost Current expresssion’s cost.

See Also

GrammarGetNextSequence, GrammaticalEvolution

22 GrammaticalRandomSearch

Examples

library("gramEvol")

ruleDef <- list(expr = gsrule("<var><op><var>"),
op = gsrule("+", "-", "*"),
var = gsrule("A", "B"))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

use exhaustive search to find the sequence for creating "B - A"
evalFunc <- function(expr) {

if (as.character(expr) == "B - A") {
return(0) # Minimum error

} else {
return(1) # maximum error

}
}

res <- GrammaticalExhaustiveSearch(grammarDef, evalFunc, terminationCost = 0)

print(res)

GrammaticalRandomSearch

Random Search

Description

Random Search within context-free grammar.

Usage

GrammaticalRandomSearch(grammar, evalFunc,
max.depth = GrammarGetDepth(grammar),
startSymb = GrammarStartSymbol(grammar),
wrappings = 3,
iterations = 1000,
terminationCost = NA,
monitorFunc = NULL)

Arguments

grammar A grammar object.

evalFunc The evaluation function, taking an expression as its input and returning the cost
(i.e., the score) of the expression.

GrammaticalRandomSearch 23

max.depth Maximum depth of recursion, in case of a cyclic grammar. By default it is
limited to the number of production rules in the grammar.

startSymb The symbol where the generation of a new expression should start.

wrappings The number of times the function is allowed to wrap around inputString if
non-terminal symbols are still remaining.

iterations Number of random expressions to test.

terminationCost

Target cost. If an expression with this cost or less is found, the algorithm termi-
nates.

monitorFunc A function that is called at each generation. It can be used to monitor evolution
of population.

Details

GrammaticalRandomSearch performs a random search within expressions that can be generated by
the grammar, to find the expression that minimises evalFunc.

The search terminates when either the predetermined number of iterations are reached, or when
an expression with a cost less than terminationCost is discovered.

If a monitorFunc is given, it is called for each expression, and it receives a list similar to the
GrammaticalExhaustiveSearch’s return value with the information availabe for that expression.

Value

bestExpression The Best expresssion.

bestSequence Best expresssion’s generating sequence.

bestCost Best expresssion’s cost.

numExpr Number of evaluated expressions.

population A matrix of sequences that were tested.

populationCost Numeric value of cost of sequences that were tested.

In addition, the monitorFunc receives the following additional slots:

currentExpression

The current expresssion.

currentSequence

Current expresssion’s generating sequence.

currentCost Current expresssion’s cost.

See Also

GrammarGetNextSequence, GrammaticalEvolution

24 ReplaceInExpression

Examples

library("gramEvol")

ruleDef <- list(expr = gsrule("<var><op><var>"),
op = gsrule("+", "-", "*"),
var = gsrule("A", "B"))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

use exhaustive search to find the sequence for creating "B - A"
evalFunc <- function(expr) {

if (as.character(expr) == "B - A") {
return(0) # Minimum error

} else {
return(1) # maximum error

}
}

search and terminate after getting to cost = 0
res <- GrammaticalRandomSearch(grammarDef, evalFunc, terminationCost = 0)

print(res)

ReplaceInExpression Replace as sub-expression isnide an expression

Description

Replace every subexpression equal to or starting with what in expr. Replacement is performed by
passing the whole subexpression to replacer.func, which should be a function(x, ...), where
x is the expression and return the desirable expression.

Usage

ReplaceInExpression(expr, what, replacer.func, ...)

Arguments

expr An expression.

what A backquoted expression to find in expr.

replacer.func A function(x, ...) to process the subexpression.

... Other parameters passed to replacer.func.

summary 25

Details

This function was designed to be used as a runtime processing tool for grammar generated expres-
sion. This allows the user to modify the resulting expression on the fly based on runtime variables,
without including them in the grammar. See examples section.

Value

An expression

References

See http://adv-r.had.co.nz/Expressions.html by Hadley Wickham.

Examples

expr = expression(function(x) {
cbind(f1(x),

f2(x),
g3(y))

})
expr
ReplaceInExpression(expr, bquote(f2), function(x) {NULL})
ReplaceInExpression(expr, bquote(f2), function(x) {bquote(f2(y))})
ReplaceInExpression(expr, bquote(g3), function(x) {bquote(f3(x))})
ReplaceInExpression(expr, bquote(g3), function(x, b) {if (b > 1) x else NULL}, b = 0)
ReplaceInExpression(expr, bquote(g3), function(x, b) {if (b > 1) x else NULL}, b = 2)

summary Context-free Grammar Object Information

Description

Examines a context-free grammar object.

Usage

S3 method for class 'grammar'
summary(object, ...)

GrammarStartSymbol(grammar)

GrammarIsRecursive(grammar, startSymb = GrammarStartSymbol(grammar), ...)

GrammarGetDepth(grammar, max.depth = max(length(grammar$def), 4),
startSymb = GrammarStartSymbol(grammar), ...)

GrammarMaxSequenceLen(grammar, max.depth = GetGrammarDepth(grammar),
startSymb = GrammarStartSymbol(grammar), ...)

http://adv-r.had.co.nz/Expressions.html

26 summary

GrammarMaxRuleSize(grammar)

GrammarMaxSequenceRange(grammar, max.depth = GrammarGetDepth(grammar),
startSymb = GrammarStartSymbol(grammar), approximate = FALSE, ...)

GrammarNumOfExpressions(grammar, max.depth = GrammarGetDepth(grammar),
startSymb = GrammarStartSymbol(grammar), ...)

Arguments

grammar, object A grammar object.

max.depth Maximum depth of search in case of a cyclic grammar. By default it is limited
to the maximum of 4 or the number of production rules in the grammar.

startSymb The symbol where the generation of a new expression should start.

approximate If True, results are approximated. Useful for recursive grammars, where number
of valid expressions prohibits an accurate measurement.

... unused inputs.

Value

summary returns a summary.grammar object, with the following slots which are obtained from the
other functions:

Start.Symbol GrammarStartSymbol returns the grammar’s starting symbol.

Is.Recursive GrammarIsRecursive returns TRUE if grammar contains a recursive element.

Tree.Depth GrammarGetDepth returns the depth of the grammar. It is limited to max.depth
for a recursive grammar.

Maximum.Sequence.Length

GrammarMaxSequenceLen returns the maximum length of a sequence needed to
generate an expression without wrapping.

Maximum.Rule.Size

GrammarMaxRuleSize returns the largest rule size in the grammar.

Maximum.Sequence.Variation

GrammarMaxSequenceRange returns a numeric sequence, with each of its el-
ements holding the highest range that the same position in all sequences can
hold.

No.of.Unique.Expressions

GrammarNumOfExpressions returns the number of expressions a grammar can
generate.

See Also

CreateGrammar, GrammarMap

summary 27

Examples

Define a simple grammar
<expr> ::= <var><op><var>
<op> ::= + | - | *
<var> ::= A | B
ruleDef <- list(expr = gsrule("<var><op><var>"),

op = gsrule("+", "-", "*"),
var = gsrule("A", "B"))

Create a grammar object
grammarDef <- CreateGrammar(ruleDef)

summarize grammar object
summary(grammarDef)

Index

as.character.GEPhenotype (GrammarMap),
15

as.expression.GEPhenotype (GrammarMap),
15

c, 2, 4
connection, 3
CreateGrammar, 2, 3, 15, 19, 26

EvalExpressions, 5, 19
EvolutionStrategy.int, 6, 11, 18, 19
expression, 24

GeneticAlg.int, 8, 9, 18, 19
GEPhenotype, 14
GetGrammarDepth (summary), 25
GetGrammarMaxRuleSize (summary), 25
GetGrammarMaxSequenceLen (summary), 25
GetGrammarNumOfExpressions (summary), 25
grammar, 12, 15, 17, 18, 21, 22, 26
GrammarGenotypeToPhenotype

(GrammarMap), 15
GrammarGetDepth (summary), 25
GrammarGetFirstSequence

(GrammarGetNextSequence), 12
GrammarGetNextSequence, 12, 21, 23
GrammarIsRecursive (summary), 25
GrammarIsTerminal, 14, 15
GrammarMap, 4, 5, 14, 15, 26
GrammarMaxRuleSize (summary), 25
GrammarMaxSequenceLen (summary), 25
GrammarMaxSequenceRange (summary), 25
GrammarNumOfExpressions (summary), 25
GrammarRandomExpression, 15, 16
GrammarStartSymbol (summary), 25
GrammaticalEvolution, 4, 8, 11, 17, 21, 23
GrammaticalExhaustiveSearch, 13, 20
GrammaticalRandomSearch, 22
grule (CreateGrammar), 3
gsrule (CreateGrammar), 3

gvrule (CreateGrammar), 3

is.GrammarOverflow
(GrammarGetNextSequence), 12

print.EvolutionStrategy.int
(EvolutionStrategy.int), 6

print.GeneticAlg.int (GeneticAlg.int), 9
print.GEPhenotype (GrammarMap), 15
print.GERule (CreateGrammar), 3
print.GESearch

(GrammaticalExhaustiveSearch),
20

print.grammar (CreateGrammar), 3
print.GrammarOverflow

(GrammarGetNextSequence), 12
print.GrammaticalEvolution

(GrammaticalEvolution), 17
print.summary.grammar (summary), 25

ReplaceInExpression, 24

summary, 25
summary.grammar (summary), 25

28

	c
	CreateGrammar
	EvalExpressions
	EvolutionStrategy.int
	GeneticAlg.int
	GrammarGetNextSequence
	GrammarIsTerminal
	GrammarMap
	GrammarRandomExpression
	GrammaticalEvolution
	GrammaticalExhaustiveSearch
	GrammaticalRandomSearch
	ReplaceInExpression
	summary
	Index

